Thursday, January 23, 2025

Artificial Intelligence news

Implementing responsible AI in...

Many organizations have experimented with AI, but they haven’t always gotten the...

OpenAI ups its lobbying...

OpenAI spent $1.76 million on lobbying in 2024 and $510,000 in the...

Why it’s so hard...

This story originally appeared in The Algorithm, our weekly newsletter on AI....

The second wave of...

Ask people building generative AI what generative AI is good for right...
HomeNewsFast-learning robots: 10...

Fast-learning robots: 10 Breakthrough Technologies 2025


WHO

Agility, Amazon, Covariant, Robust, Toyota Research Institute

WHEN

Now

Generative AI is causing a paradigm shift in how robots are trained. It’s now clear how we might finally build the sort of truly capable robots that have for decades remained the stuff of science fiction. 

Robotics researchers are no strangers to artificial intelligence—it has for years helped robots detect objects in their path, for example. But a few years ago, roboticists began marveling at the progress being made in large language models. Makers of those models could feed them massive amounts of text—books, poems, manuals—and then fine-tune them to generate text based on prompts. 

The idea of doing the same for robotics was tantalizing—but incredibly complicated. It’s one thing to use AI to create sentences on a screen, but another thing entirely to use it to coach a physical robot in how to move about and do useful things.

Now, roboticists have made major breakthroughs in that pursuit. One was figuring out how to combine different sorts of data and then make it all useful and legible to a robot. Take washing dishes as an example. You can collect data from someone washing dishes while wearing sensors. Then you can combine that with teleoperation data from a human doing the same task with robotic arms. On top of all that, you can also scrape the internet for images and videos of people doing dishes.

By merging these data sources properly into a new AI model, it’s possible to train a robot that, though not perfect, has a massive head start over those trained with more manual methods. Seeing so many ways that a single task can be done makes it easier for AI models to improvise, and to surmise what a robot’s next move should be in the real world. 

It’s a breakthrough that’s set to redefine how robots learn. Robots that work in commercial spaces like warehouses are already using such advanced training methods, and the lessons we learn from those experiments could lay the groundwork for smart robots that help out at home. 



Article Source link and Credit

Continue reading

Meta’s new AI model can translate speech from more than 100 languages

Meta has released a new AI model that can translate speech from 101 different languages. It represents a step toward real-time, simultaneous interpretation, where words are translated as soon as they come out of someone’s mouth.  Typically, translation models...

Training robots in the AI-powered industrial metaverse

Imagine the bustling floors of tomorrow’s manufacturing plant: Robots, well-versed in multiple disciplines through adaptive AI education, work seamlessly and safely alongside human counterparts. These robots can transition effortlessly between tasks—from assembling intricate electronic components to handling complex...

Here’s our forecast for AI this year

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here. In December, our small but mighty AI reporting team was asked by our editors to...