Monday, September 9, 2024

Artificial Intelligence news

Roblox is launching a...

Roblox plans to roll out a generative AI tool that will let...

What this futuristic Olympics...

The Olympic Games in Paris just finished last month and the Paralympics...

AI’s impact on elections...

This year, close to half the world’s population has the opportunity to...

Here’s how ed-tech companies...

This story is from The Algorithm, our weekly newsletter on AI. To...
HomeMachine LearningFrom Robustness to...

From Robustness to Privacy and Back



*= Equal Contributors
We study the relationship between two desiderata of algorithms in statistical inference and machine learning—differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any…



Article Source link and Credit

Continue reading

Positional Description for Numerical Normalization

We present a Positional Description Scheme (PDS) tailored for digit sequences, integrating placeholder value information for each digit. Given the structural limitations of subword tokenization algorithms, language models encounter critical Text Normalization (TN) challenges when handling numerical tasks....

AV-CPL: Continuous Pseudo-Labeling for Audio-Visual Speech Recognition

Audio-visual speech contains synchronized audio and visual information that provides cross-modal supervision to learn representations for both automatic speech recognition (ASR) and visual speech recognition (VSR). We introduce continuous pseudo-labeling for audio-visual speech recognition (AV-CPL), a semi-supervised method...

Novel-View Acoustic Synthesis From 3D Reconstructed Rooms

We investigate the benefit of combining blind audio recordings with 3D scene information for novel-view acoustic synthesis. Given audio recordings from 2-4 microphones and the 3D geometry and material of a scene containing multiple unknown sound sources, we...