Thursday, June 13, 2024

Artificial Intelligence news

Apple is promising personalized...

At its Worldwide Developer Conference on Monday, Apple for the first time...

What using artificial intelligence...

This story originally appeared in The Algorithm, our weekly newsletter on AI....

The data practitioner for...

The rise of generative AI, coupled with the rapid adoption and democratization...

Five ways criminals are...

Artificial intelligence has brought a big boost in productivity—to the criminal underworld.  Generative...
HomeMachine LearningLivePose: Online 3D...

LivePose: Online 3D Reconstruction from Monocular Video with Dynamic Camera Poses



Dense 3D reconstruction from RGB images traditionally assumes static camera pose estimates. This assumption has endured, even as recent works have increasingly focused on real-time methods for mobile devices. However, the assumption of one pose per image does not hold for online execution: poses from real-time SLAM are dynamic and may be updated following events such as bundle adjustment and loop closure. This has been addressed in the RGB-D setting, by de-integrating past views and re-integrating them with updated poses, but it remains largely untreated in the RGB-only setting. We formalize…



Article Source link and Credit

Continue reading

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a...

KPConvX: Modernizing Kernel Point Convolution with Kernel Attention

In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on Multi-Layer Perceptron (MLP) encodings. While it initially achieved success, it has...

Efficient Diffusion Models without Attention

Transformers have demonstrated impressive performance on class-conditional ImageNet benchmarks, achieving state-of-the-art FID scores. However, their computational complexity increases with transformer depth/width or the number of input tokens and requires patchy approximation to operate on even latent input sequences....