Monday, June 24, 2024

Artificial Intelligence news

Synthesia’s hyperrealistic deepfakes will...

Startup Synthesia’s AI-generated avatars are getting an update to make them even...

How underwater drones could...

A potential future conflict between Taiwan and China would be shaped by...

How generative AI could...

First, a confession. I only got into playing video games a little...

I tested out a...

This story first appeared in China Report, MIT Technology Review’s newsletter about...
HomeMachine LearningNear-Optimal Algorithms for...

Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime



*=Equal Contributors
We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret where is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are . We also develop an adaptive algorithm for the small-loss setting with regret where is the total loss of the best expert…



Article Source link and Credit

Continue reading

Conformer-Based Speech Recognition on Extreme Edge-Computing Devices

This paper was accepted at the Industry Track at NAACL 2024. With increasingly more powerful compute capabilities and resources in today’s devices, traditionally compute-intensive automatic speech recognition (ASR) has been moving from the cloud to devices to better protect...

AGRaME: Any Granularity Ranking with Multi-Vector Embeddings

Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility...

Time Sensitive Knowledge Editing through Efficient Finetuning

Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains. However, keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete. It is thus essential to...