Saturday, October 12, 2024

Artificial Intelligence news

Google DeepMind wins joint...

In a second Nobel win for AI, the Royal Swedish Academy of...

Adobe wants to make...

Adobe has announced a new tool to help creators watermark their artwork...

Geoffrey Hinton just won...

Geoffrey Hinton, a computer scientist whose pioneering work on deep learning in...

Geoffrey Hinton just won...

Geoffrey Hinton, a computer scientist whose pioneering work on deep learning in...
HomeMachine LearningPDP: Parameter-free Differentiable...

PDP: Parameter-free Differentiable Pruning is All You Need



DNN pruning is a popular way to reduce the size of a model, improve the inference latency, and minimize the power consumption on DNN accelerators. However, existing approaches might be too complex, expensive or ineffective to apply to a variety of vision/language tasks, DNN architectures and to honor structured pruning constraints. In this paper, we propose an efficient yet effective train-time pruning scheme, Parameter-free Differentiable Pruning (PDP), which offers state-of-the-art qualities in model size, accuracy, and training cost. PDP uses a dynamic function of weights during training to…



Article Source link and Credit

Continue reading

On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are...

Depth Pro: Sharp Monocular Metric Depth in Less Than a Second

We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of...

Improving How Machine Translations Handle Grammatical Gender Ambiguity

Machine Translation (MT) enables people to connect with others and engage with content across language barriers. Grammatical gender presents a difficult challenge for these systems, as some languages require specificity for terms that can be ambiguous or neutral...