Monday, December 9, 2024

Artificial Intelligence news

The US Department of...

The US Department of Defense has invested $2.4 million over two years...

OpenAI’s new defense contract...

At the start of 2024, OpenAI’s rules for how armed forces might...

Google DeepMind’s new AI...

Google DeepMind has unveiled an AI model that’s better at predicting the...

The startup trying to...

A startup called Exa is pitching a new spin on generative search....
HomeMachine LearningState Spaces Aren’t...

State Spaces Aren’t Enough: Machine Translation Needs Attention



*= Equal Contributors
Structured State Spaces for Sequences (S4) is a recently proposed sequence model with successful applications in various tasks, e.g., vision, language modeling, and audio. Thanks to its mathematical formulation, it compresses its input to a single hidden state and is able to capture long-range dependencies while avoiding the need for an attention mechanism. In this work, we apply S4 to Machine Translation (MT) and evaluate several encoder-decoder variants on WMT’14 and WMT’16. In contrast with the success in language modeling, we find that S4 lags behind the Transformer…



Article Source link and Credit

Continue reading

Memory-Retaining Finetuning via Distillation

This paper was accepted at the Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML) Workshop at NeurIPS 2024. Large language models (LLMs) pretrained on large corpora of internet text possess much of the world's knowledge. Following pretraining, one...

Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To...

Towards Time-Series Reasoning with LLMs

Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance...