Monday, September 9, 2024

Artificial Intelligence news

Roblox is launching a...

Roblox plans to roll out a generative AI tool that will let...

What this futuristic Olympics...

The Olympic Games in Paris just finished last month and the Paralympics...

AI’s impact on elections...

This year, close to half the world’s population has the opportunity to...

Here’s how ed-tech companies...

This story is from The Algorithm, our weekly newsletter on AI. To...
HomeNewsSuccessfully deploying machine...

Successfully deploying machine learning


After decades of research and development, mostly confined to academia and projects in large organizations, artificial intelligence (AI) and machine learning (ML) are advancing into every corner of the modern enterprise, from chatbots to tractors, and financial markets to medical research. But companies are struggling to move from individual use cases to organization-wide adoption for several reasons, including inadequate or inappropriate data, talent gaps, unclear value propositions, and concerns about risk and responsibility.

This MIT Technology Review Insights report, commissioned by and produced in association with with JPMorgan Chase, draws from a survey of 300 executives and interviews with seven experts from finance, health care, academia, and technology to chart elements that are enablers and barriers on the journey to AI/ML deployment.

The following are the report’s key findings:

Businesses buy into AI/ML, but struggle to scale across the organization. The vast majority (93%) of respondents have several experimental or in-use AI/ML projects, with larger companies likely to have greater deployment. A majority (82%) say ML investment will increase during the next 18 months, and closely tie AI and ML to revenue goals. Yet scaling is a major challenge, as is hiring skilled workers, finding appropriate use cases, and showing value.

Deployment success requires a talent and skills strategy. The challenge goes further than attracting core data scientists. Firms need hybrid and translator talent to guide AI/ML design, testing, and governance, and a workforce strategy to ensure all users play a role in technology development. Competitive companies should offer clear opportunities, progression, and impacts for workers that set them apart. For the broader workforce, upskilling and engagement are key to support AI/ML innovations.

Centers of excellence (CoE) provide a foundation for broad deployment, balancing technology-sharing with tailored solutions. Companies with mature capabilities, usually larger companies, tend to develop systems in-house. A CoE provides a hub-and-spoke model, with core ML consulting across divisions to develop widely deployable solutions alongside bespoke tools. ML teams should be incentivized to stay abreast of rapidly evolving AI/ML data science developments.

AI/ML governance requires robust model operations, including data transparency and provenance, regulatory foresight, and responsible AI. The intersection of multiple automated systems can bring increased risk, such as cybersecurity issues, unlawful discrimination, and macro volatility, to advanced data science tools. Regulators and civil society groups are scrutinizing AI that affects citizens and governments, with special attention to systemically important sectors. Companies need a responsible AI strategy based on full data provenance, risk assessment, and checks and controls. This requires technical interventions, such as automated flagging for AI/ML model faults or risks, as well as social, cultural, and other business reforms.

Download the report

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.



Article Source link and Credit

Continue reading

How “personhood credentials” could help prove you’re a human online

As AI models become better at mimicking human behavior, it’s becoming increasingly difficult to distinguish between real human internet users and sophisticated systems imitating them.  That’s a real problem when those systems are deployed for nefarious ends like spreading...

A new way to build neural networks could make AI more understandable

A tweak to the way artificial neurons work in neural networks could make AIs easier to decipher. Artificial neurons—the fundamental building blocks of deep neural networks—have survived almost unchanged for decades. While these networks give modern artificial intelligence its...

How machine learning is helping us probe the secret names of animals

Do animals have names? According to the poet T.S. Eliot, cats have three: the name their owner calls them (like George); a second, more noble one (like Quaxo or Cricopat); and, finally, a “deep and inscrutable” name known...