Wednesday, December 11, 2024

Artificial Intelligence news

Bluesky has an impersonator...

Like many others, I recently fled social media platform X for Bluesky....

AI’s hype and antitrust...

This story originally appeared in The Algorithm, our weekly newsletter on AI....

We saw a demo...

One afternoon in late November, I visited a weapons test site in...

How to use Sora,...

MIT Technology Review’s How To series helps you get things done.  Today, OpenAI released its...
HomeMachine LearningThe Monge Gap:...

The Monge Gap: A Regularizer to Learn All Transport Maps



Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another.
Recent works have drawn inspiration from Brenier’s theorem, which states that when the ground cost is the squared-Euclidean distance, the “best” map to morph a continuous measure in into another must be the gradient of a convex function.
To exploit that result, , Makkuva et al. (2020); Korotin et al. (2020) consider maps , where is an input convex neural network (ICNN), as defined by Amos et al. 2017, and fit with SGD using…



Article Source link and Credit

Continue reading

Memory-Retaining Finetuning via Distillation

This paper was accepted at the Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML) Workshop at NeurIPS 2024. Large language models (LLMs) pretrained on large corpora of internet text possess much of the world's knowledge. Following pretraining, one...

Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To...

Towards Time-Series Reasoning with LLMs

Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance...