Wednesday, December 11, 2024

Artificial Intelligence news

Bluesky has an impersonator...

Like many others, I recently fled social media platform X for Bluesky....

AI’s hype and antitrust...

This story originally appeared in The Algorithm, our weekly newsletter on AI....

We saw a demo...

One afternoon in late November, I visited a weapons test site in...

How to use Sora,...

MIT Technology Review’s How To series helps you get things done.  Today, OpenAI released its...
HomeMachine LearningUnconstrained Channel Pruning

Unconstrained Channel Pruning



Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques — channel pruning — combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency — so much so, that the pruned model is even slower than the original, unpruned model. As a workaround, existing pruning works constrain certain channels to be…



Article Source link and Credit

Continue reading

Memory-Retaining Finetuning via Distillation

This paper was accepted at the Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML) Workshop at NeurIPS 2024. Large language models (LLMs) pretrained on large corpora of internet text possess much of the world's knowledge. Following pretraining, one...

Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To...

Towards Time-Series Reasoning with LLMs

Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance...