Thursday, June 13, 2024

Artificial Intelligence news

Apple is promising personalized...

At its Worldwide Developer Conference on Monday, Apple for the first time...

What using artificial intelligence...

This story originally appeared in The Algorithm, our weekly newsletter on AI....

The data practitioner for...

The rise of generative AI, coupled with the rapid adoption and democratization...

Five ways criminals are...

Artificial intelligence has brought a big boost in productivity—to the criminal underworld.  Generative...
HomeMachine LearningWhen Does Optimizing...

When Does Optimizing a Proper Loss Yield Calibration?



Optimizing proper loss functions is popularly believed to yield predictors with good calibration properties; the intuition being that for such losses, the global optimum is to predict the ground-truth probabilities, which is indeed calibrated. However, typical machine learning models are trained to approximately minimize loss over restricted families of predictors, that are unlikely to contain the ground truth. Under what circumstances does optimizing proper loss over a restricted family yield calibrated models? What precise calibration guarantees does it give? In this work, we provide a…



Article Source link and Credit

Continue reading

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a...

KPConvX: Modernizing Kernel Point Convolution with Kernel Attention

In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on Multi-Layer Perceptron (MLP) encodings. While it initially achieved success, it has...

Efficient Diffusion Models without Attention

Transformers have demonstrated impressive performance on class-conditional ImageNet benchmarks, achieving state-of-the-art FID scores. However, their computational complexity increases with transformer depth/width or the number of input tokens and requires patchy approximation to operate on even latent input sequences....